

Product Definition

Ultra-low power Wearable, Heart-Rate and Proximity AFE with I 2C Interface.

Description

HX3600 is an ultra-low power wearable, heart-rate monitor and Proximity AFE with I2C Interface. HX3600 include Transmitter and Receiver two parts. The Transmitter supports two programmable pulse LED driver. The Receiver has one PPG input channel. The current from the PPG input channel is digitized by an analog-to-digital converter (ADC). The ADC code can be read out using an I2C interface. The device has a high dynamic range transmit and receive circuitry that helps with the sensing of very small signal level.

Features

Transmitter:

2-Bit Programmable LED Current from 12.5mA to 100 mA(extendable to 200mA) Support of two channel LED driver

Receiver:

20-Bit ADC Representation of the Current-Input from a Photodiode in unipolar straight binary format Programmable TIA Feedback Resister from 54K to 432K Individual DC Offset Subtraction DAC at TIA Input for Each LED and Ambient Phase Average Current Less Than 150 µA for PPG Signal Acquisition Dynamic Range: 98dB

Pulse Frequency: 10 SPS to 1000 SPS

Interface: I2C BUS up to 800KHz

Supplies: Rx: 2.7 V to 3.6 V, Tx: 3 V to 4.2 V

Operating Temperature Range: -20°C to 85°C

Package size :3.0mm×3mm×0.75mm

Applications

Optical Heart-Rate Monitoring (HRM)

Optical Heart-Rate Variability (HRV)

Proximity Detect (PS)

Blood Pressure (BP)

Function Block Diagrams

Pin Configuration

PIN LIST :

_			
Pin num	Name	Туре	Description
1	LDR0	А	LED driver 0 input
2	LDR1	А	LED driver 1 input
3	VINN	А	Negative PPG input
4	VINP	А	Positive PPG input
5	VP25	А	Internal 2.5V LDO output pin, need 1-µF capacitor to GND
6	NC		
7	NC	(
8	INT	D	ADC ready interrupt signal (output)for HRM and INT signal for PS
9	SDA	D	I2C data, external pull up resistor (for example, 10 kΩ)
10	SCL	D	I2C CLK, external pull up resistor (for example, $10 \text{ k}\Omega$)
11	GND	А	Common ground for transmitter and receiver
12	VDD	A	Power supply; 1-µF decapacitor to GND
13	NC		
14	NC		
15	NC		
16	NC		

Specifications

Absolute Maximum Ratings(Ta=25 °C, unless otherwise specified)

Parameter	Min	Max	Unit
VDD	-0.2	4	V
Analog inputs	VDDA – 0.3	VDDA + 0.3	V
Digital inputs	VDDA – 0.3	VDDA+ 0.3	V
Input current to any pin except supply pins		± 7	mA
Operating temperature range	-20	85	°C
Maximum junction temperature		125	

Recommended Operating Conditions

	Min	Max	Unit
VDDA	2.7	3.6	V
Supply voltage accuracy	7	£5	%
Specified temperature range	-20	85	°C
Maximum junction temperature		125	

ESD Ratings

		Value	Unit
V(esd)	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001	± 2000	
Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101	±250	v

Version 3.0 | 15 June 2018 | HX3600EN NJ.TYHX : http://www.tianyihexin.com All rights reserved. Any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

I²C Protocol

Interface and control are accomplished through an I^2C serial compatible interface to a set of registers that provide access to device control functions and output data. The address of HX3600 is 0x44, the device also supports the 7-bit I^2C addressing protocol.

HX3600 supports the standard writing and reading protocol. The register index will automatically increase by 1 after the addressed register has been accessed (read or write).

Version 3.0 | 15 June 2018 | HX3600EN NJ.TYHX : <u>http://www.tianyihexin.com</u> All rights reserved. Any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

Register List

The device is controlled and monitored by data registers accessible through the serial interface. These registers provide for a variety of control functions and can be read to determine results of the ADC conversions. The register set is summarized in Table 1.

Address	name	R/W	function	Recommend Value
0x00	ID	RO	Device ID	0x22
0x01	Reserved	RO	Reserved	0x01
0x02	Enable	R/W	Hrs and Ps function enable	0x33
0x03	Reserved	RO	Reserved	0x8f
0x04	LED	R/W	Hrs Phase LED on time configuration	0x10
0x05	LED	R/W	Ps Phase LED on time configuration	0x20
0x06	Interrupt	R/W	Interrupt relate configuration	0x50
0x07	Interrupt	R/W	Interrupt relate configuration	0x07
0x08	Interrupt	R/W	Interrupt relate configuration	0x00
0x09	Sleep enable	R/W	Sleep mode enable	0x02
0x14	Offset IDAC	R/W	Ps phase offset idac configuration	0x00
0x15	Offset IDAC	R/W	Hrs phase offset idac configuration	0x00
0x16	Ps interval	R/W	Ps interval between each data	0x40
0xa0		RO	hrs_data1_out [7:0]	0x00
0xa1	HRS DATA1	RO	hrs_data1_out [15:8]	0x00
0xa2		RO	hrs_data1_out [23:16]	0x00
0xa3		RO	hrs_data2_out [7:0]	0x00
0xa4	ALS DATA1	RO	hrs_data2_out [15:8]	0x00
0xa5		RO	hrs_data2_out [23:16]	0x00
0xa6		RO	ps1_data1_out [7:0]	0x00
0xa7	PS1 DATA1	RO	ps1_data1_out [15:8]	0x00
0xa8		RO	ps1_data1_out [23:16]	0x00
0xa9		RO	ps3_data2_out [7:0]	0x00
Охаа	ALS DATA2	RO	ps3_data2_out [15:8]	0x00
0xab		RO	ps3_data2_out [23:16]	0x00
0xc0	LED_DR	RW	LED driver configuration	0x86

Table 1. Register Address

Version 3.0 | 15 June 2018 | HX3600EN

NJ.TYHX : <u>http://www.tianyihexin.com</u>

All rights reserved. Any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

ID Register(0x00)

The ID Register(read-only) provides the value for the part number.

BITS	FIELD	Description
7:0	ID	0x22

Enable Register(0x02)

Enable Register(0x02)						
The enable Register used to enable HRS and PS function.						
BITS	FIELD	Description				
7	Reserved	0				
6	PS enable	1:PS function enable; 0 PS function disable;				
5:4	PS ADC OSR	PS OSR: 00:128 01:256 10:512 11:1024				
3	Reserved	0				
2	PS enable	1:PS function enable ; 0 PS function disable ;				
1:0	PS ADC OSR	PS OSR: 00:128				
		01:256				
		10:512				
	3	11:1024				

LED Register(0x04)

The LED Register used to set LED on time in HRS phase ;

BITS	FIELD	Description
7:0	LED	LED on time in HRS phase :

LED Register(0x05)

The LED Register used to set LED on time in PS phase ;

BITS	FIELD	Description
7:0	LED	LED on time in PS phase :

Version 3.0 | 15 June 2018 | HX3600EN

NJ.TYHX : http://www.tianyihexin.com

All rights reserved. Any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

SLEEP Register (0x09)

The Sleep register is used to enable and disable the chip , when sleep function is enabled , $I_vdd<1uA$.

BITS	FIELD	Description
7:1	Reserved	Reserved
0	Sleep	1:power down
		0:power on
LED DR R	egister(0xc0)	
BITS	FIELD	Description
7:2	Reserved	Reserved
1:0	Led driver	00 : 12.5mA
		01 : 25mA
		10 : 50mA
		14:100mA
	(

Application Information

A typical application for HX3600 is shown in Figure 2. The I²C signals and the Interrupt are open-drain outputs and require pull-up resistor (R_P). It is recommended use 10 k Ω resistor when running at 400kbps. A 10 K Ω pull up resistor (R_{PI}) can be used for the interrupt line. LEDA = LDO(3.3v) or VBAT.

PCB Pad Layout

Suggest PCB pad layout guidelines for the surface module are shown in Figure 4. Flash Gold is recommended surface finish for the landing pads.

BOTTOM VIEW

Version 3.0 | 15 June 2018 | HX3600EN NJ.TYHX : <u>http://www.tianyihexin.com</u> All rights reserved. Any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission

Figure 3. Suggested Module PCB layout

Note: All linear dimensions are in mm. Dimension tolerance is ±0.05mm unless otherwise noted.

Nanjing TianYiHeXin Electronics Co.,Ltd.

HX3600 HRM AFE

Soldering Information

The module has been tested and has demonstrated an ability to be reflow soldered to a PCB substrate. The process, equipment, and material used in these test are detailed below. The solder reflow profile describes the expected maximum heat exposure of components during the solder reflow process of product on a PCB. Temperature is measured on top of component. The components should be limited to a maximum of three passes through this solder reflow profile.

Parameter	Reference	Device
Average temperature gradient in preheating		2.5° C/sec
Soak time	tsoak	2 to 3 minutes
Time above 217° C (T ₁)	t_1	Max 60 sec
Time above 230° C (T ₁)	t2	Max 50 sec
Time above T_{peak} -10°C (T ₃)	t ₃	Max 10 sec
Peak temperature in reflow	T _{peak}	260 ℃
Temperature gradient in cooling		Max-5°C/sec

Figure 4. Solder reflow profile Diagram